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Abstract: DNA gyrases are enzymes that control the topology of DNA in bacteria cells. This is
a vital function for bacteria. For this reason, DNA gyrases are targeted by widely used antibiotics
such as quinolones. Recently, structural and biochemical investigations identified a new class of
DNA gyrase inhibitors called NBTIs (i.e., novel bacterial topoisomerase inhibitors). NBTIs are
particularly promising because they are active against multi-drug resistant bacteria, an alarming
clinical issue. Structural data recently demonstrated that these NBTIs bind tightly to a newly
identified pocket at the dimer interface of the DNA–protein complex. In the present study, we used
molecular dynamics (MD) simulations and docking calculations to shed new light on the binding
of NBTIs to this site. Interestingly, our MD simulations demonstrate the intrinsic flexibility of this
binding site, which allows the pocket to adapt its conformation and form optimal interactions
with the ligand. In particular, we examined two ligands, AM8085 and AM8191, which induced
a repositioning of a key aspartate (Asp83B), whose side chain can rotate within the binding
site. The conformational rearrangement of Asp83B allows the formation of a newly identified
H-bond interaction with an NH on the bound NBTI, which seems important for the binding of
NBTIs having such functionality. We validated these findings through docking calculations using
an extended set of cognate oxabicyclooctane-linked NBTIs derivatives (~150, in total), screened against
multiple target conformations. The newly identified H-bond interaction significantly improves the
docking enrichment. These insights could be helpful for future virtual screening campaigns against
DNA gyrase.
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1. Introduction

DNA gyrase is a metalloenzyme that belongs to the topoisomerase family. This family of proteins
manipulates the topological state of DNA [1,2]. The DNA gyrase is chiefly present in prokaryotes [3],
where it catalyzes the cleavage of the two helices of a DNA strand in an ATP-dependent manner,
making it essential for bacterial survival [4]. DNA gyrase is a validated pharmaceutical target for
antibiotics [5], and some of its homologous human forms are targeted by several anticarcinogens [6,7].
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DNA gyrase comprises two subunits, GyrA and GyrB, which form the A2B2 tetramer in the
active enzyme [8]. GyrA contains the catalytic tyrosine, which can cleave the DNA when correctly
positioned adjacent to the GyrB TOPRIM domain (Figure 1) [9]. Quinolones are drugs for treating
bacterial infections [10,11]. They bind to the cleavage binding site and poison the DNA gyrase by
stabilizing the cleaved DNA–protein complex [12]. Quinolone derivatives have been used for decades
as antibiotics of last resort [13]. However, their excessive use and misuse have led to alarming rates of
quinolone-resistant bacteria strains [14]. Coumarin derivatives, such as novobiocin, are another class
of DNA gyrase inhibitors [15]. Unlike quinolones, coumarins target the ATP binding pocket located
in the GyrB subunits, and they are active against the quinolone-resistant form of the enzyme [16].
However, the coumarin derivatives manufacture has been halted due to the presence of safer and more
effective agents [17].

Int. J. Mol. Sci. 2018, 19, x 2 of 12 

 

pharmaceutical target for antibiotics [5], and some of its homologous human forms are targeted by 

several anticarcinogens [6,7]. 

DNA gyrase comprises two subunits, GyrA and GyrB, which form the A2B2 tetramer in the 

active enzyme [8]. GyrA contains the catalytic tyrosine, which can cleave the DNA when correctly 

positioned adjacent to the GyrB TOPRIM domain (Figure 1) [9]. Quinolones are drugs for treating 

bacterial infections [10,11]. They bind to the cleavage binding site and poison the DNA gyrase by 

stabilizing the cleaved DNA–protein complex [12]. Quinolone derivatives have been used for decades 

as antibiotics of last resort [13]. However, their excessive use and misuse have led to alarming rates 

of quinolone-resistant bacteria strains [14]. Coumarin derivatives, such as novobiocin, are another 

class of DNA gyrase inhibitors [15]. Unlike quinolones, coumarins target the ATP binding pocket 

located in the GyrB subunits, and they are active against the quinolone-resistant form of the enzyme 

[16]. However, the coumarin derivatives manufacture has been halted due to the presence of safer 

and more effective agents [17]. 

 

Figure 1. (A) Representation of the GyrA-GyrB truncated core fusion (PDB 4PLB). This structure 

contains monomer B and monomer D, which are shown in green and blue, respectively. The DNA is 

represented as red surface. The two maroon boxes enclose the protein’s catalytic site. AM8191 (Cpd2) 

is displayed in white carbons, WAT2 in CPK representation, and Mg2+ as purple spheres; (B) Binding 

mode of Cpd2 into DNA gyrase; (C) 2D representation of the NBTIs studied, Cpd1 and Cpd2, in their 

protonated state, as in our simulations; (D) Scaffold classification for Cpd2, showing the left-hand 

side (LHS) in green, the linker in pink, and the right-hand side (RHS) in light blue. 

Recently a number of papers have been published [18–21] on the so-called “novel bacterial 

topoisomerase inhibitors” (NBTIs) [22]. Structural studies demonstrated that these compounds 

inhibit DNA gyrase by binding to a newly identified pocket located at the interface between the two 

GyrA subunits, stabilizing the pre-cleaved DNA–protein complex [23]. Since NBTIs target a new site 

of the DNA gyrase structure, they may not suffer from cross-resistance with quinolones or coumarin-

derivatives [24]. This makes the development of NBTIs a promising strategy for identifying potent 

antibacterial agents active against multidrug-resistant strains of bacteria, such as methicillin-resistant 

Staphylococcus aureus (MRSA) [25]. 

In more detail, the chemical scaffold of NBTIs comprises two heterocycles connected via an 

aliphatic linker, usually containing a basic nitrogen (Figure 1D) [26]. Structural data have shown that 

NBTIs interact via hydrophobic contacts with the target, forming π–π interactions between two bases 

of the DNA. The linker portion also establishes a conserved H-bond with the side chain of Asp83 of 

monomer D (Asp83D) at the binding site (PDB 4PLB, Figure 1B) [21,23,27–30]. 

In this work, we performed classical molecular dynamics (MD) simulations of a truncated core 

fusion of GyrA and GyrB in complex with either AM8085 or AM8191, which are two potent NBTIs 

[21]. Our goal was to identify and characterize the key drug–target interactions required for drug 

binding by means of MD simulations. We observed that the intrinsic flexibility of the NBTI binding 

pocket al.lows the formation of an additional crucial H-bond between the NBTI and Asp83 from 

Figure 1. (A) Representation of the GyrA-GyrB truncated core fusion (PDB 4PLB). This structure
contains monomer B and monomer D, which are shown in green and blue, respectively. The DNA is
represented as red surface. The two maroon boxes enclose the protein’s catalytic site. AM8191 (Cpd2)
is displayed in white carbons, WAT2 in CPK representation, and Mg2+ as purple spheres; (B) Binding
mode of Cpd2 into DNA gyrase; (C) 2D representation of the NBTIs studied, Cpd1 and Cpd2, in their
protonated state, as in our simulations; (D) Scaffold classification for Cpd2, showing the left-hand side
(LHS) in green, the linker in pink, and the right-hand side (RHS) in light blue.

Recently a number of papers have been published [18–21] on the so-called “novel bacterial
topoisomerase inhibitors” (NBTIs) [22]. Structural studies demonstrated that these compounds
inhibit DNA gyrase by binding to a newly identified pocket located at the interface between the
two GyrA subunits, stabilizing the pre-cleaved DNA–protein complex [23]. Since NBTIs target
a new site of the DNA gyrase structure, they may not suffer from cross-resistance with quinolones
or coumarin-derivatives [24]. This makes the development of NBTIs a promising strategy for
identifying potent antibacterial agents active against multidrug-resistant strains of bacteria, such as
methicillin-resistant Staphylococcus aureus (MRSA) [25].

In more detail, the chemical scaffold of NBTIs comprises two heterocycles connected via
an aliphatic linker, usually containing a basic nitrogen (Figure 1D) [26]. Structural data have shown that
NBTIs interact via hydrophobic contacts with the target, forming π–π interactions between two bases
of the DNA. The linker portion also establishes a conserved H-bond with the side chain of Asp83 of
monomer D (Asp83D) at the binding site (PDB 4PLB, Figure 1B) [21,23,27–30].

In this work, we performed classical molecular dynamics (MD) simulations of a truncated
core fusion of GyrA and GyrB in complex with either AM8085 or AM8191, which are two potent
NBTIs [21]. Our goal was to identify and characterize the key drug–target interactions required for
drug binding by means of MD simulations. We observed that the intrinsic flexibility of the NBTI
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binding pocket allows the formation of an additional crucial H-bond between the NBTI and Asp83 from
monomer B (Asp83B, with the same nomenclature as in the 4PLB crystal structure). These findings
were subsequently validated by docking calculations of ~150 NBTI cognates bearing a common
oxabicyclooctane linker [21,30–34], which were docked into the target in different conformations.
Our results confirm that the newly identified H-bond with Asp83B is important in favoring the tight
binding of NBTIs to the recently identified pocket of DNA gyrase.

2. Results and Discussion

2.1. MD Simulations for NBTI Binding

In the present work, we began by performing a comparative analysis of three model systems
investigated via molecular dynamics (MD) simulations of ~100 ns each. System 1 (Sys1) comprises
the truncated core fusion of DNA gyrase in complex with the inhibitor AM8085 (Cpd1 in Figure 1C;
IC50 = 0.22 µM against Staphylococcus aureus DNA gyrase). System 2 (Sys2) is the same enzyme in
complex with the inhibitor AM8191 (Cpd2 in Figure 1C; IC50 = 1.02 µM against Staphylococcus aureus
DNA gyrase). Notably, the two inhibitors share the same oxabicyclooctane chemical scaffold, differing
only in the presence of an OH group in Cpd2, at position 22 (Figure 1C). For comparison, we also
considered the apo form of the core (SysAPO). See Section 3 for details.

After the equilibration phase (~10 ns), the protein and the DNA were stable. The RMSD values
were ~1.6 ± 0.1 Å for the protein in both Sys1 and Sys2, and ~1.0 ± 0.1 Å for DNA in both Sys1
and Sys2 (Figure S1). Cpd1 was also stable for the entire simulation, with an RMSD of ~0.9 ± 0.2 Å
(Figure 2). Conversely, Cpd2 remained very stable for only the first ~55 ns of the trajectory, showing
a low RMSD value of ~0.5 ± 0.1 Å. Then, the RMSD suddenly increased to ~1.2 ± 0.1 Å, suggesting
a conformational rearrangement that was firmly maintained until the end of the simulation (Figure 2).

The crystallographic H-bond formed by Asp83D and the basic nitrogen of the linker (hereafter
referred to as Hb1, Figure 1D) was already present in the starting X-ray structure. During our simulations,
we observed that this H-bond was stably maintained during the entire simulation (persistency of 98%
in both Sys1 and Sys2). Notably, Hb1 is present in all the available DNA gyrase/NBTI complexes,
suggesting its relevance for target–ligand interaction and binding [21,23,27–30].
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Figure 2. Time evolution of the root-mean square deviation (RMSD) of Cpd1 (red) and Cpd2 (blue)
computed on Sys1 and Sys2 trajectories, respectively.

Interestingly, in both Cpd1 and Cpd2, we observed the free rotation of the oxabicyclooctane
ring during the MD simulations. In theory, the oxabicyclooctane ring can adopt three different
conformations, Conf-A, Conf-B, and Conf-C. These conformations are identified by three different
values of the dihedral angle α formed by the atoms C1-N1-C2-C3 (Figure 1D and Section 3). In the
case of Cpd1, α rotates continuously, visiting the crystallographic Conf-A for 8.9% of the simulated
time, and Conf-B and Conf-C for the remaining 16.6% and 74.5%, respectively (Figure 3). Conversely,
for Cpd2, the dihedral angle α is more stable, and the inhibitor remains in the crystallographic
conformation Conf-A for the initial ~55 ns, as also indicated by its low RMSD (Figures 2 and 3). Then,
α rotates, and the molecule assumes Conf-B, where it remains until the end of the simulation. Notably,
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Cpd2 never adopted Conf-C (Figure 3). This is due to the presence of the hydroxyl group in the
linker, which allows the formation of a water-mediated intramolecular H-bond with the oxygen of the
oxabicyclooctane (WAT1 in Figure S2). This water-mediated intramolecular H-bond stabilizes Conf-B,
decreasing the conformational fluctuations of the linker, and preventing the formation of Conf-C.
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the simulated time. For Cpd1, the α dihedral angle populates the three conformational states, Conf-A,
Conf-B, and Conf-C. Cpd2 visits only Conf-A and Conf-B.

A second water molecule (WAT2, Figure 1D) is also present in several of the available X-ray
structures (PDB codes: 4PLB, 2XCS, 4BUL, 5IWI, 5NPP) [21,23,27–29]. This water molecule resides at
the entrance of the hydrophobic cavity in the enzyme and participates in a water-mediated H-bond
interaction between Asp83 of chain B (hereafter referred to as Asp83B) and the NBTIs’ linker (Figure 1D).
In both Sys1 and Sys2, our MD simulations show that WAT2 leaves the binding site during the
unrestrained equilibration, suggesting that this water molecule is poorly stable in the protein–ligand
complex. However, the displacement of WAT2 preludes the formation of a new H-bond (hereafter
referred to as Hb2) between Asp83B and the nitrogen of the pyrido-oxazinone ring of the RHS portion
of the inhibitor (Figure 1D). In fact, Hb2 has an overall occupancy of 99% in both Sys1 and Sys2.
Notably, Asp83B’s side chain changes its crystallographic position to approach the RHS to form this
new H-bond. Importantly, the flexibility of the binding site is a key feature for binding, which has
been similarly observed for other proteins [35–37]. Here, the conformational displacement of Asp83B
was captured by monitoring the distance from the Cγ of Asp83B to the Cα of the nearby residues
Ala68D (d1) or to the Cα of Ala68B (d2) (Figure 4). In detail, in both MD simulations of Sys1 and Sys2,
d2 shortened from 9.1 Å (i.e., X-ray value) to ~7 Å, while d1 remained close to the crystallographic
value (i.e., 9.1 Å). As expected, in the absence of the ligand, Asp83B showed a pronounced flexibility
with respect to the holo systems (Sys1 and Sys2). In fact, in the MD simulations of SysAPO, both d1
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and d2 varied remarkably with respect to their crystallographic value, indicating that Asp83B sampled
a broader conformational space in SysAPO than in Sys1 and Sys2 (Figure 4). These results demonstrate
that Asp83B can indeed adopt multiple orientations, in addition to that resolved in 4PLB. Interestingly,
the electron density map of 4PLB shows poor electron density for Asp83B, which suggests significant
flexibility for this residue, which can therefore flip to adopt different conformations. In addition,
to better characterize the possible spatial configurations of Asp83B, we visually inspected 43 X-ray
structures of DNA gyrase and topoisomerase IV (Table S1). Through a structural superposition of
the X-ray structures, we observed that, in 35 of them, the corresponding Asp83B’s side chain adopts
the same orientation as in the X-ray structure used in our study (i.e., 4PLB), where Hb2 is prevented
(see Table S1 for details). However, we also found that the corresponding Asp83B is shifted in four
structures, assuming an optimal orientation for Hb2 formation, in agreement with our observation from
the MD simulations in which the ligand is bound to the target. Intriguingly, in three PDB structures
(4Z2C, 4Z2D, 4Z2E) [38], Asp83B points down. In 3IFZ, a major conformational rearrangement
is visible, which involves the entire helix, along which Asp83B is located [39]. Taken together,
these structural data confirm that Asp83B is indeed very flexible, being able to adopt a variety of
conformations, including the one observed in our MD simulations, which is stabilized by the formation
of Hb2 with the ligand.
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and the Cα of Ala68B).

Overall, our MD simulations suggest that both Asp83B and Asp83D are key for the binding of
this selection of NBTIs. In detail, we found that Asp83B can modify its conformation to stably
form a previously uncharacterized H-bond Hb2 interaction with the right-hand side (RHS) of
Cpd1 and Cpd2, while Asp83D locks the NBTIs linker through the crucial H-bond Hb1. That is,
these two aspartates act as two arms that clamp the ligands in the pocket, stabilizing their binding.
Notably, biochemical studies support the importance of the aspartates in the protein–ligand binding.
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These studies have demonstrated that NBTIs (e.g., AZ6142, AZ0217, MCHEM18) lose potency when
these aspartates are replaced by a glycine [40].

2.2. Accounting for Asp83B Flexibility and H-Bond Formation in Docking Calculations

Here, we applied docking calculations to validate the outcomes obtained from our classical MD
simulations [41,42]. The final goal was to define the optimal docking set-up for virtual screening
campaigns of NBTIs against the DNA gyrase. To this end, we first collected 146 cognate compounds
belonging to the NBTI class of inhibitors, retrieved from six publications from the same research
group [21,30–34]. Notably, these molecules are close analogs of Cpd1 and Cpd2, sharing the same
oxabicyclooctane scaffold. These ligands were divided into 83 active and 63 inactive ones, according to
their MIC value. In the context of this study, our subjective criterion was to consider as active only
those compounds that display an MIC ≤ 1 µg/mL (see Section 3 for details). Subsequently, we docked
all the active and inactive ligands against three representative structures of DNA gyrase: (i) the original
X-ray structure of the truncated core fusion (referred to as X-ray), (ii) the same structure without
WAT2, as found in our MD simulations (referred to as X-ray/noWAT2), and (iii) a representative
frame from the MD simulations of Sys2, bearing Asp83B in a conformation prone to forming the
newly identified H-bond Hb2 with the ligand (referred to as MDconf). After docking the entire dataset
against the three models, we quantified the enrichment by computing both the BEDROC and the ROC
curve. This analysis was conducted to understand which docking protocol would better discriminate
active from inactive ligands. As a result, using the X-ray structure as receptor, the BEDROC (α = 8.0)
value was 0.55 (Figure 5). By excluding the crystallographic water WAT2 (X-ray/noWAT2 system),
the resulting BEDROC value of 0.52 is comparable to the previous one (Figure 5). The presence of
the WAT2 water molecule, therefore, does not substantially affect the docking results, meaning that it
is likely not essential for ligand binding. This is in line with our MD simulations, which show that
WAT2 is particularly unstable within the binding site. Remarkably, the enrichment improved when we
used MDconf as the receptor. In this case, the BEDROC value increased to 0.72 (Figure 5). Importantly,
after visually inspecting the resulting binding poses, we noted that ~70% of the docked active ligands
formed Hb2 with Asp83B. This demonstrates that this newly identified interaction is highly favorable
for ligand binding at this recently identified site of DNA gyrase.
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3. Materials and Methods

3.1. Systems Preparation and MD Simulations

In this study, we performed classical MD simulations of three biomolecular systems: (1) SysAPO,
which comprises a GyrA-GyrB truncated core fusion in complex with DNA; (2) Sys1, which comprises
ligand AM8085 (Cpd1) in complex with SysAPO, and (3) Sys2, which comprises ligand AM8191 (Cpd2)
bound also to SysAPO. SysAPO was modeled starting from PDB code 4PLB [21], with a resolution
of 2.69 Å. We removed the co-crystallized ligand (Cpd2) and all the water molecules except for
WAT2. Furthermore, the 12-residue loop connecting GyrA and GyrB was modeled using Prime [43,44].
Sys1 was prepared starting from the previously described model, in which Cpd1 was docked using the
Glide software [45,46]. Sys2 was prepared in the same way as SysAPO, but this time keeping the native
ligand (Cpd2). For the sake of clarity, we specify that in this study we name chains as in the original
crystal structure (namely, monomers B and D in PDB code 4PLB), where each monomer is a truncated
fusion of GyrA and GyrB subunits. Thus, the letters B and D that indicate the aspartate residues
refer to the chain they belong to in the PDB. However, Asp83B (the aspartate belonging to Chain B,
as named in the PDB) corresponds to Asp83A according to the standard naming of residues in GyrA.
At the same time, Asp83D (the aspartate belonging to Chain D, as named in the PDB) corresponds to
Asp83C according to the standard naming of residues in GyrA.

The protein and the DNA were parameterized using AMBER’s ff14SB force field [47]. The partial
charges of the ligands (Cpd1 and Cpd2) were calculated with the RESP [48] model using a 6-31G*
basis set, and parameterized using the general AMBER force field (GAFF) [49]. Both, Cpd1 and Cpd2
were simulated with their linker’s nitrogen atom protonated. The three systems were immersed in
a TIP3P water box [50], leaving 15 Å from the solute and the edges of the box. The resulting box was
136 × 128 × 120 Å3.

First, the systems were minimized using the steepest descent method for a maximum of 5000 steps.
Then, the systems were gradually heated to reach 300 K in 100 ps, using modified Berendsen
thermostats [51] and applying harmonic restraints with force constants of 1000 kJ mol−1 nm−2 in all
three directions to the systems’ backbone and the ligands. The heated systems were subsequently
submitted to an equilibration phase of ~200 ps in an NPT ensemble, maintaining the temperature at
300 K and applying a Parrinello–Rahman barostat [52]. At this point, all restraints were removed and
the systems were equilibrated for ~10 ns, each. Then, a production phase of ~90 ns was collected,
for each of the systems. During the MD simulations, the LINCS algorithm [53] was used to constrain
all bonds, and the Particle Mesh Ewald (PME) [54] was used to account for electrostatic interactions.
The integration time step was 2 fs. All the MD simulations were carried out with Gromacs version 4.6
(Gromacs, Groningen, Netherlands) [55]. This workflow has already been successfully implemented
for similar studies in other biological systems [56,57].

3.2. Analysis of the MD Simulations

We evaluated the stability of the three systems (SysAPO, Sys1, and Sys2) during the MD
simulations by computing the root-mean-square deviation (RMSD) of the protein’s backbone using
the g_rms tool from Gromacs [55]. The occupancy of H-bonds along the trajectories was computed
using the g_hbond tool from Gromacs and the readHBmap script. We considered as an H-bond only
those configurations with a donor-acceptor distance less than 3.5 Å and a hydrogen-donor-acceptor
angle greater than 30◦. The distances and dihedral angles were computed using the g_dist and g_angle
tools from Gromacs. To define the three different conformations of the ligands observed during the
MD trajectories of Sys1 and Sys2, we used the dihedral angle α formed by the atoms C1-N1-C2-C3

(Figure 1). In particular, we divided the α values into three equal intervals (0◦ to 120◦, 120◦ to 240◦,
and 240◦ to 360◦), corresponding to Conf-A, Conf-B, and Conf-C, respectively.
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3.3. Protein Preparation and Building of the Training Set

For our docking calculations, we used three representative conformations of the GyrA-GyrB
truncated core fusion: (i) the 4PLB X-ray structure model including the 12-residue missing loop (X-ray) [21];
(ii) the same model as in (i), stripping the WAT2 water molecule from the binding site (X-ray/noWAT2);
(iii) the first frame of the MD simulations of Sys2 where Asp83B’s conformational change occurs and is
prone to form Hb2. All three conformations were prepared with the Protein Preparation Wizard’s [58,59]
protocol implemented in Maestro. Finally, a restrained minimization was performed, setting a maximum
RMSD of 0.3 Å, and a 10 Å edge-long cubic grid was centered in the NBTI binding site.

For this study, we used 126 ligands retrieved from six recent publications from the same group.
All 126 compounds share a common oxabicyclooctane scaffold as Cpd1 and Cpd2 [21,30–34]. Notably,
we selected only those structures where the stereochemistry was specified. This set of ligands was
prepared with the LigPrep tool implemented in Maestro, using the OPLS2005 force field [60], and all
possible ionization states and tautomers at pH 7 ± 1 were generated with Epik [61,62]. Through
this procedure, we obtained a total of 146 ligands that were subsequently split into two groups
according to the reported MIC values. Specifically, we considered active compounds to be those
with an MIC ≤ 1 µg/mL, and inactive compounds to be those with an MIC > 1 µg/mL. Using this
threshold, we obtained 83 active molecules and 63 inactive ones.

3.4. Docking

All docking calculations were carried out using the Glide software implemented in Maestro [45,46].
The docking protocol consists of the following settings: (a) penalization of non-planar amide
conformations; (b) sampling of nitrogen inversions and ring conformations; (c) favoring the π

conjugated group’s planarity; (d) adding the calculated Epik state penalties to the final scoring
value; (e) considering aromatic hydrogen atoms as H-bond donors, and halogens as H-bond acceptors.
All calculations were performed using the standard precision mode. The BEDROC metric [63] was
calculated using the enrichment Python script from the Schrödinger suite. In this case, we focused
on BEDROC with α = 8.0, i.e., we considered the first 20% of the rank to account for 80% of the score.
The ROC curves [64] were obtained with an in-house Python script.

4. Conclusions

In this work, we used classical MD simulations and docking calculations to characterize the
key interactions for the binding of novel bacterial topoisomerase inhibitors (NBTIs) to the DNA
gyrase enzyme. Together with the crystallographic H-bond (Hb1), which connects Asp83D with
the NBTI linker, our MD simulations revealed the possible formation of a second favorable H-bond
(Hb2) between Asp83B and the inhibitor (Figure 1). Hb2 is formed via the reorientation of Asp83B,
which rotates to point toward the ligand. Inspection of a set of X-ray structures of DNA gyrase and
topoisomerase IV revealed a broad distribution of conformations of Asp83B (Table S1). This further
supports this residue’s intrinsic flexibility, as demonstrated in our MD simulations, and also explains
the conformational switch we observed. Finally, we validated these findings through docking
calculations, demonstrating that the formation of Hb2 enhances the enrichment of a dataset of
~150 cognate NBTIs. These results might help in identifying new NBTIs against DNA gyrase.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/19/2/453/s1.
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